2200 वर्ष पुरानी स्टॉमाकियन नामक गणितीय पहेली का खेल कई मायनों में है रोमांचक!

विचार II - दर्शन/गणित/चिकित्सा
15-11-2023 10:28 AM
Post Viewership from Post Date to 16- Dec-2023 (31st Day)
City Subscribers (FB+App) Website (Direct+Google) Messaging Subscribers Total
2825 156 0 2981
* Please see metrics definition on bottom of this page.
2200 वर्ष पुरानी स्टॉमाकियन नामक गणितीय पहेली का खेल कई मायनों में है रोमांचक!

आपने पहेलियों के बारे में तो सुना ही होगा, परंतु, क्या आपने गणितीय पहेलियों के बारे सुना हैं? चलिए, आज इनके बारे में पढ़ते हैं। दुनिया की सबसे पुरानी ज्ञात गणित पहेली स्टॉमाकियन(Stomachion) है। इसका आविष्कार ग्रीक(Greek) गणितज्ञ आर्किमिडीज़(Archimedes)ने किया था, जिनका जन्म 287 ईसा पूर्व के आसपास हुआ था। वह दुनिया के कुछ महानतम गणितज्ञों और अभियंताओं में से एक थे।
स्टॉमाकियन को एक विच्छेदन पहेली के रूप में जाना जाता है, और इसमें एक वर्ग के अंदर 14 टुकड़े होते हैं। संभावना है कि,आर्किमिडीज़ ने स्टॉमाकियन के सभी टुकड़ों को मूल चौकोर आकार में वापस जोड़ने का प्रयास करने के लिए, दूसरों को चुनौती दी होगी। तथा इसके अन्य संभावित उपयोगों में, इन टुकड़ों को जानवरों या पक्षियों जैसी परिचित आकृतियों में इकट्ठा करना भी शामिल हो सकता है। स्टॉमाकियन को आर्किमिडीज़ का लोक्यूलस(Loculus of Archimedes) भी कहा जाता है। ‘स्टॉमाकियन’ शब्द का मूल शब्द ग्रीक भाषा से है, जिसका अर्थ दरअसल, “पेट” है।
स्टॉमाकियन का वर्णन करने वाला पाठ पहली बार, 10वीं शताब्दी ईसवी से मिलता है, और इसे आर्किमिडीज़ के पहले कार्यों से संदर्भ लेकर लिखा गया था। 13वीं शताब्दी में इस पांडुलिपि का एक प्रार्थना पुस्तक के रूप में पुन: उपयोग किया गया। तब यह प्रथा आम थी।वास्तव में, स्टॉमाकियन खेल के विवरण वाली पांडुलिपि को आर्किमिडीज़ पालिम्पसेट(Archimedes Palimpset) कहा जाता है। ‘पालिम्पसेट’ शब्द पुरानी पांडुलिपियों का नए ग्रंथों के तौर पर पुन: उपयोग करने की इस प्रथा को संदर्भित करता है। 1998 में, आधुनिक इमेजिंग तकनीकों(Imaging techniques)की मदद से, आर्किमिडीज़ पालिम्प्सेस्टिन(Palimpsestin) को पूरा पढ़ना संभव था। इसमें, स्टॉमाकियन पर आर्किमिडीज़ के लेखन की एकमात्र ज्ञात प्रति भी शामिल थी। यदि आप स्टॉमाकियन के साथ खेलने में कुछ समय बिताते हैं, तो आप जल्द ही महसूस करेंगे कि, इस पहेली को वापस वर्ग में जोड़ने के कई अलग-अलग तरीके हैं। यहां तक कि, गणितज्ञ भी आश्चर्यचकित होने लगे थे कि, इससे कितनी अलग-अलग आकृतियां बनाई जा सकती हैं।नवंबर 2003 में, बिल कटलर(Bill Cutler) ने दिखाया था कि, आर्किमिडीज़ की इस पहेली के लगभग 536 अलग-अलग समाधान हैं। इसकी एक किसी भी विशिष्ट आकृति का अर्थ है कि, यह पिछली आकृति का घूर्णन या प्रतिबिंब नहीं होती है। साथ ही, यदि इन टुकड़ों का घूर्णन या प्रतिबिंब किया जाए, तो कुछ टुकड़ों को समतुल्य माना जा सकता है।
इस पहेली में एक वर्ग के आकार में व्यवस्थित होने वाले, विभिन्न आकृतियों के 14 सपाट टुकड़े होते हैं। इस वर्ग के किनारे की लंबाई 12 के रूप में लेते हुए, टुकड़ों का क्षेत्रफल 3, 3, 6, 6, 6, 6, 9, 12, 12, 12, 12, 12, 21 और 24 है, जिससे उन्हें सापेक्ष क्षेत्रफल 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 7, और 8 मिलता है। दिलचस्प बात यह है कि, हमेशा ही, एक नियमित वर्ग ग्रिड(Square grid) पर बिंदुओं को जोड़ने से बनने वाले सभी बहुभुजों के क्षेत्रफल अवश्य पूर्ण संख्याओं के अनुपात में होने चाहिए।
आर्किमिडीज़ की पहेली में, इस खेल के प्रत्येक टुकड़े का क्षेत्रफल पूरे वर्ग के क्षेत्रफल का 1/48 का गुणज है। टुकड़ों को अलग करने और इनकी एक सुविधाजनक पुनर्व्यवस्था से पता चलता है कि, स्टॉमाकियन के टुकड़ों का उपयोग करके क्षेत्रों के सरल अंशों का निर्माण किया जा सकता है। यह खेल, एक अन्य ज्यामितीय एवं प्रसिद्ध खेल टैनग्राम(Tangram) से भी मिलता जुलता है। कुछ वैज्ञानिकों का दावा है कि, इन खेलों से बच्चों की ज्यामितीय एवं गणितीय आकलन क्षमता का भी विकास होता हैं। इसलिए, आपको एक बार इस खेल को जरूर खेलना चाहिए।
आज के युग में, जहां पारंपरिक खेलों की तुलना में ऑनलाइन खेलों(Online games) को ज्यादा पसंद किया जा रहा है, स्टॉमाकियन खेल के कुछ ऑनलाइन संस्करण एवं खेल उपलब्ध है। आप निम्न लिंक पर जाकर, एक ऐसा ही ऑनलाइन स्टॉमाकियन खेल, खेल सकते हैं–
https://www.geogebra.org/m/pteravjV

संदर्भ
https://tinyurl.com/3s979tsz
https://tinyurl.com/4479ctcu
https://tinyurl.com/4c4dhym5
https://tinyurl.com/yc8rffkf

चित्र संदर्भ
1. स्टॉमाकियन की आकृति को संदर्भित करता एक चित्रण (wikimedia)
2. स्टॉमाकियन, प्राचीन यूनानी बोर्ड गेम को संदर्भित करता एक चित्रण (wikimedia)
3. स्टॉमाकियन के आंकड़ों को संदर्भित करता एक चित्रण (wikimedia)
4. फिट बोर्ड गेम को संदर्भित करता एक चित्रण (wikimedia)

s